Вопрос задан 16.06.2023 в 15:25. Предмет Геометрия. Спрашивает Калиев Тимур.

Знайдіть висоту циліндра, об'єм якого дорівнює 98п см, а радіус основи - 7 см

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курдяпин Даня.

-------------------------------------------------------


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Height of a Cylinder

To find the height of a cylinder when the volume and the radius of the base are known, you can use the formula for the volume of a cylinder and solve for the height.

Step 1: Volume of a Cylinder The formula for the volume of a cylinder is given by: \[ V = \pi r^2 h \] Where: - \( V \) = Volume - \( \pi \) (pi) is approximately 3.14159 - \( r \) = Radius of the base - \( h \) = Height of the cylinder

Step 2: Rearranging the Formula We can rearrange the formula to solve for the height: \[ h = \frac{V}{\pi r^2} \]

Step 3: Calculating the Height Substitute the given values into the formula to find the height: \[ h = \frac{98\pi}{\pi \times 7^2} \] \[ h = \frac{98}{7^2} \] \[ h = \frac{98}{49} \] \[ h = 2 \, \text{cm} \]

Conclusion The height of the cylinder, when the volume is 98π cm³ and the radius of the base is 7 cm, is 2 cm.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос