Вопрос задан 28.06.2018 в 10:34. Предмет Геометрия. Спрашивает Орынбасарова Жұлдыз.

Очень нужно!)) В треугольнике ABC известны длины сторон АВ=40, АС=64, точка О - центр окружности,

описанной около треугольника АВС. Прямая ВD, перпендикулярная прямой АО, пересекает сторону АС в точке D. найдете СD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шестаков Павлик.

Прямая BD пересекает описанную окружность в точке К, а прямая АО - в точке Е. Т.к. АО-радиус окружности, значит АЕ - ее диаметр. ВК-хорда окружности. По условию ВД перпендикулярна АО, значит и ВК перпендикулярна AЕ. Диаметр, перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Значит, точка A — середина дуги КАВ, дуга КА равна дуге ВА. Вписанные углы, опирающиеся на равные дуги, равны, следовательно ∠АСВ=∠АВК=∠АВД. Получается у треугольников ABD и ACB два угла равны (∠А-общий), значит треугольники подобны по двум углам. Следовательно, АД/АВ=АВ/АС. АД=АВ²/АС=40²/64=25. Значит СД=АС-АД=64-25=39.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос