Вопрос задан 27.06.2018 в 22:42. Предмет Геометрия. Спрашивает Ли Рома.

На окружности радиуса R последовательно отмечены точки A,B,C и D так, что величины дуг AB и BC

равны соответственно 50° и 80°, а диагонали четырехугольника ABCD равны между собой. Найдите длину наибольшей стороны этого четырехугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Назаров Олег.

Так как диагонали равны, то это может быть прямоугольник или равнобедренная трапеция. Тогда дуга АД, стягивающая наибольшую сторону АД будет = 360 - (50 + 80 + 50) = 180 гр. То есть АД - диаметр описанной окружности.  То есть АД = 2R.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос