
Даны векторы а {-3;8} и b {6;m}. При каком значении m векторы а и b: 1) коллинеарны 2)
перпендикулярны

Ответы на вопрос

Для того чтобы векторы a и b были коллинеарны, они должны быть параллельны и иметь одинаковое направление. Для этого нужно, чтобы их координаты были пропорциональны.
Координаты вектора a: {-3; 8}
Координаты вектора b: {6; m}
Чтобы векторы a и b были коллинеарны, необходимо, чтобы:
-3/6 = 8/m
Решая это уравнение, получаем:
m = -16/3
Таким образом, при m = -16/3 векторы a и b будут коллинеарны.
Для того чтобы векторы a и b были перпендикулярны, их скалярное произведение должно быть равно нулю:
a * b = (-3 * 6) + (8 * m) = -18 + 8m
-18 + 8m = 0
8m = 18
m = 9/4
Таким образом, при m = 9/4 векторы a и b будут перпендикулярны.



Два вектора коллинеарны, если они сонаправлены или противоположно сонаправлены. Для того чтобы векторы a {-3;8} и b {6;m} были коллинеарны, необходимо, чтобы их координаты были пропорциональны.
- Чтобы векторы a и b были коллинеарны, их координаты должны быть пропорциональны. То есть, для координат x и y должно выполняться отношение:
-3/6 = 8/m
Чтобы решить это уравнение, мы можем применить правило пропорции. Умножим крест-накрест:
-3 * m = 6 * 8
-3m = 48
m = -48/3
m = -16
Таким образом, при m = -16, векторы а {-3;8} и b {6;-16} будут коллинеарны.
- Два вектора перпендикулярны, если их скалярное произведение равно нулю. Скалярное произведение векторов a и b можно выразить следующим образом:
a · b = -3 * 6 + 8 * m = 0
-18 + 8m = 0
8m = 18
m = 18/8
m = 9/4
Таким образом, при m = 9/4, векторы а {-3;8} и b {6;9/4} будут перпендикулярны.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili