Вопрос задан 23.06.2018 в 15:11. Предмет Геометрия. Спрашивает Aybar Kundiz.

Боковые грани правильной треугольной призмы- квадрат. Площадь боковой поверхности призмы равна 144.

Найти объем многогранника , вершинами которого служат центры всех граней призмы.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Сережа.

Площадь боковой грани призмы: 144:3=48 (три равных боковых грани).
Значит сторона основания призмы и высота призмы равна √48= 4√3.
Многогранник, вершинами которого служат центры всех граней призмы - это две равные правильные пирамиды. Высота одной такой пирамиды  равна половине высоты призмы (2√3), а   основание - правильный треугольник со сторонами, равными средним линиям треугольника - основания призмы - 2√3.
So=(√3/4)*a² или So=3√3.
Vпирамиды=(1/3)So*h=(1/3)3√3*2√3=6.
Тогда объем искомого многогранника равен 2*Vпирамиды или
V=2*6=12.
Ответ: V=12.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос