Вопрос задан 22.06.2018 в 04:21. Предмет Геометрия. Спрашивает Пономарев Сергей.

Высота правильной треугольной пирамиды равна 6дм, а её боковое ребро равно 12дм. Найти объём

пирамиды
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Селезнев Егор.

Постоим треугольник ASH (см. приложение). Найдем AH по т. Пифагора: AH = √(144 - 36) = 6√3 дм. Так как треугольник ABC - равносторонний, то точка H - центр описанной окружности, а AH - ее радиус. Найдем длину стороны основания из формулы радиуса описанной около правильного треугольника окружности: R = a÷√3 ⇒ a = R*√3 = 6√3 * √3 = 18 дм. Весь объем пирамиды можно найти по формуле: a²*h÷4√3 = 18²*6÷4√3 = 162√3 дм³.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос