
Знайдіть діагональ (у см) правильної чотирикутної призми, якщо діагональ бічної грані дорівнює 8
см, а ребро основи — 6 см.

Ответы на вопрос

Ответ:
Для знаходження діагоналі правильної чотирикутної призми, ми можемо скористатися теоремою Піфагора.
У даній задачі маємо діагональ бічної грані довжиною 8 см і ребро основи довжиною 6 см.
Позначимо діагональ призми як "d", а ребро призми як "a".
Застосовуючи теорему Піфагора для прямокутного трикутника, утвореного ребром основи, половиною діагоналі бічної грані та діагоналлю призми, отримуємо:
d² = a² + (a/2)²
Замінюємо відомі значення:
d² = 6² + (6/2)²
d² = 36 + 9
d² = 45
Тепер знайдемо квадратний корінь з обох боків:
d = √45
Отже, діагональ правильної чотирикутної призми дорівнює приблизно 6.71 см (заокруглимо до двох десяткових знаків).
Таким чином, діагональ призми становить приблизно 6.71 см.



Для знаходження діагоналі правильної чотирикутної призми, ми можемо скористатися теоремою Піфагора.
Для даної призми, ми маємо ребро основи довжиною 6 см і діагональ бічної грані довжиною 8 см. Оскільки ця призма є правильною, основа є квадратом.
Запишемо теорему Піфагора для однієї половини основи і діагоналі бічної грані: ,
де та - сторони квадрата (ребро основи), а - діагональ бічної грані.
Підставимо відомі значення: .
Виконаємо обчислення: , .
Щоб знайти значення , візьмемо квадратний корінь з обох боків: .
Виконуючи остаточні обчислення, отримуємо: .
Таким чином, діагональ правильної чотирикутної призми приблизно дорівнює 8.485 см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili