Вопрос задан 07.05.2021 в 19:33. Предмет Геометрия. Спрашивает Курлович Алинка.

Помогите решить пожалуйста


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Быков Виктор.
Так как пирамида правильная, в ее основании лежит квадрат, поэтому все стороны основания равны между собой. Возьмем две стороны:
AB = BC = 12.

Проведем диагональ AC и увидим прямоугольный треугольник.
AB, BC - катеты.
AC - гипотенуза.

AC² = AB² + BC² = 12² + 12² = 144 + 144 = 288.
AC = √288 = 2√72.

AC = DB - диагонали.

При этом в диагонали AC: AO = OC, а в диагонали DB: DO = OB.

Так как AO = OC = DO = OB, диагонали равны и делятся пополам:

AO = OC = DO = OB =  \frac{2 \sqrt{72} }{2} =  \sqrt{72} .

Возьмем треугольник SOB.
Зная гипотенузу SB и катет OB, найдем высоту SO:

SO² = SB² - OB² = 19² - √72 = 361 - 72 = 289.
SO = √289 = 17.

Ответ: 17.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос