Вопрос задан 05.05.2021 в 02:04. Предмет Геометрия. Спрашивает Романов Даниил.

Дано два подобных треугольника. S ABC=32, сторона AB=4, S A1B1C1=50. Найти сторону A1B1=?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Серова Алёна.
Sabc/Sa1b1c1= 32/50=0,64
т.е. =0,64
AB/A1B1=0,64
4/x=0,64
A1B1= 6,25
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для подобных треугольников, отношение любой стороны одного треугольника к соответствующей стороне другого треугольника равно коэффициенту подобия, который равен отношению любых двух соответствующих сторон.

Давайте обозначим сторону A1B1 как x. Тогда отношение стороны AB к стороне A1B1 равно отношению коэффициентов подобия этих треугольников:

AB / A1B1 = k

Для нахождения k, мы можем использовать отношение площадей этих треугольников, которое также равно квадрату коэффициента подобия:

S ABC / S A1B1 = k^2

Подставляя известные значения, получаем:

32 / 50 = k^2

k^2 = 0.64

k = 0.8

Теперь мы можем найти сторону A1B1:

AB / A1B1 = k

4 / A1B1 = 0.8

A1B1 = 4 / 0.8 = 5

Таким образом, сторона A1B1 равна 5.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос