Вопрос задан 04.05.2021 в 02:13. Предмет Геометрия. Спрашивает Волк Света.

катеты прямоугольного треугольника = 9 и 12 см, найти высоту треугольника проведенную из вершины

прямого угла
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кусь Ксюша.

высота и есть гипотенузой. например треугольник АБС,АБ=9,АС=12. найти ВС.

за т. Пифагора 

БС=9 В квадрате +12 в квадрате=81+144=225

корень с 225=15

БС=15см.

ну походу вот так) 

0 0
Отвечает Кальюлайд Кирилл.
Проводим высоту. Она делит гипотенузу на 2 не равные части. Сама гипотенуза равна 15 из теоремы пифагора. Говорим одна часть гипотенузы(которая ближе к катету 9 ) равна х, тогда другая равна 15-х. Составляемый два уровнения в которых искомую высоту называем у. Уровнения это теорема Пифагора для маленьких треугольников. 9^2 = х^2 + у^2 первое уравнение 12^2=[15-х]^2 + у^2 второе уравнение. Вычитаем получаем х= 5,4 . Подставляем х в первое уравнение получаем высота равна корень квадратный из 51,84
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти высоту треугольника, проведенную из вершины прямого угла, нам нужно знать длину одного из катетов. Для этого можно воспользоваться теоремой Пифагора, которая гласит, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

гипотенуза² = катет₁² + катет₂²

В нашем случае известны катеты: 9 см и 12 см. Найдем длину гипотенузы:

гипотенуза² = 9² + 12² гипотенуза² = 81 + 144 гипотенуза² = 225 гипотенуза = √225 гипотенуза = 15

Теперь мы знаем длину гипотенузы и один из катетов, поэтому можем найти высоту треугольника, проведенную из вершины прямого угла. Обозначим эту высоту буквой h.

Высота треугольника, проведенная из вершины прямого угла, является другим катетом прямоугольного треугольника, поэтому мы можем воспользоваться формулой для нахождения площади прямоугольного треугольника:

площадь = 0.5 * катет₁ * катет₂

Подставим значения катетов:

площадь = 0.5 * 9 * 12 площадь = 54

Также площадь прямоугольного треугольника можно выразить через длину гипотенузы и высоту, проведенную из вершины прямого угла:

площадь = 0.5 * гипотенуза * h

Подставим значения:

54 = 0.5 * 15 * h

Решим уравнение относительно h:

h = 54 / (0.5 * 15) h = 7.2

Таким образом, высота треугольника, проведенная из вершины прямого угла, равна 7.2 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос