Вопрос задан 27.03.2021 в 12:33. Предмет Геометрия. Спрашивает Гура Коля.

ABCD-трапеция .Bc и AD-основание . Mn-средняя линия .Mn=9 см. Ad в 2 раща больше BC .Найдите

основание трапеции
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гиниборг Артем.
Пускай ВС=х, а AD=2x. Тогда, по формуле средней линии, MN=
 \frac{x + 2x}{2}
Делаем пропорцию:
 \frac{9}{1}  =  \frac{3x}{2}  \\ 9 \times 2 = 3x \\ 18 = 3x \\ x =  \frac{18}{3}  \\ x = 6 \\ 2x = 12


Ответ: ВС=6 (см), АD=12 (см)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Мы можем использовать свойство средней линии трапеции, которое гласит, что длина средней линии равна полусумме длин оснований трапеции.

Из условия задачи мы знаем, что Mn = 9 см, что является длиной средней линии трапеции. Мы также знаем, что AD в 2 раза больше, чем BC. Обозначим длину BC как x, тогда длина AD будет 2x.

Используя свойство средней линии, мы можем записать:

Mn = (BC + AD) / 2

Подставляя известные значения, получим:

9 = (x + 2x) / 2

9 = 3x / 2

x = 6

Таким образом, мы нашли, что длина BC равна 6 см. Чтобы найти длину AD, мы можем использовать то, что она в 2 раза больше, чем BC, то есть AD = 2 * 6 = 12 см.

Ответ: основание трапеции BC равно 6 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос