Вопрос задан 10.03.2021 в 03:39. Предмет Геометрия. Спрашивает Гимаева Лиля.

помогите пожалуйста решить задачу. Угол ромба 32 градуса. найдите углы, которые образует его

сторона с диоганалями
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Авагимян Давид.
Стороны ромба равны между собой; диагонали ромбы одновременно являются и бисектрисами углов.
Вычислим тупой угол ромба 180-32=148°.
Углы, которые образуют диагонали ромба с одной из его сторон будут равны 32/2=16° и 148/2=74°.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

У ромба все стороны равны между собой, и диагонали перпендикулярны друг другу. Поскольку одна диагональ делит ромб на два равнобедренных треугольника, то угол между стороной ромба и диагональю будет равен половине угла при вершине равнобедренного треугольника.

Угол при вершине равнобедренного треугольника можно найти, используя свойство суммы углов треугольника. В данном случае, сумма углов треугольника равна 180 градусов, и так как два угла равны (из-за равнобедренности треугольника), то третий угол также равен.

Поэтому, угол при вершине равнобедренного треугольника будет равен (180 - 32) / 2 = 74 градуса.

Таким образом, углы, которые образует сторона ромба с его диагоналями, будут равны 74 градуса и 90 градусов.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос