
Найти синус если косинус равен дроби 1/3


Ответы на вопрос

по основному тригонометрическому тождеству:
синус (квадрат) х + косинус (квадрат) х = 1
отсюда
синус=корень из следующего выражения: (1-косинус (квадрат) 1/3)= корень (1-1/9)=корень (8/9)= 2корня из 2/3



Для нахождения синуса, если косинус равен дроби 1/3, мы можем использовать тригонометрическую тождественную связь между синусом и косинусом. Эта тождественная связь гласит:
синус^2(θ) + косинус^2(θ) = 1,
где θ - угол.
Используя это тождество, мы можем найти синус:
синус^2(θ) + (1/3)^2 = 1.
синус^2(θ) + 1/9 = 1.
синус^2(θ) = 1 - 1/9.
синус^2(θ) = 8/9.
Теперь найдем синус(θ), возведя в квадрат обе стороны уравнения:
синус(θ) = ± √(8/9).
синус(θ) = ± (2√2)/3.
Таким образом, синус равен ± (2√2)/3. Обратите внимание, что синус является многозначной функцией, и поэтому мы получаем два возможных значения.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili