Вопрос задан 01.03.2021 в 15:16. Предмет Геометрия. Спрашивает Чернова Александра.

Диагонали трапеции делят её среднюю линию на три равные части.Найдите отношение большего основания

к меньшему
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Семенов Михаил.
(a+b)/2-2+(b/2)=(a-b/2)
b/2=(a-b)/2
a=2*b
a/b=2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть большее основание трапеции равно b, а меньшее основание равно a. Также пусть диагонали трапеции делят её среднюю линию на три равные части.

При делении средней линии на три равные части, получаем четыре отрезка равной длины. Пусть каждый из этих отрезков равен d.

Тогда, согласно условию, сумма длин двух средних отрезков равна длине диагонали трапеции. Поэтому имеем следующее уравнение:

2d = b

Также, согласно свойствам трапеции, средняя линия является средним геометрическим между двумя основаниями. То есть:

2d = a + b

Теперь можно объединить эти два уравнения и решить систему:

a + b = 4d 2d = b

Подставим второе уравнение в первое:

a + 2d = 4d a = 2d

Теперь подставим это значение обратно в уравнение 2d = b:

2d = b

Из этих двух уравнений следует:

a = 2d b = 2d

Таким образом, отношение большего основания к меньшему основанию равно:

b/a = (2d)/(2d) = 1/1 = 1

Отношение большего основания к меньшему основанию равно 1.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос