
Вопрос задан 17.06.2018 в 15:06.
Предмет Геометрия.
Спрашивает Фіда Сергій.
.В прямоугольнике АВСД, АВ =4 см, ВС= 5 см. Точка Р принадлежит отрезку ВС. В четырехугольник АРСД
вписана окружность. Вычислите периметр четырехугольника вершинами которого являются точки А, Д, центр окружности и середина стороны АВ.

Ответы на вопрос

Отвечает Корьев Артур.
Соединив точки А и Р, получим прямоугольную трапецию АРСД.
Диаметр вписанной в трапецию окружности равен ее высоте, здесь - стороне АВ=СД, т.е. 4. Радиус r=2 см
Проведем из центра О радиусы в точки касания окружности с ВС и СД. Отрезки касательных, проведенные из одной точки, равны.
КС=СЕ=r=2 см.
ВК=ВС-КС=5-2=3 см
Обозначим М середину АВ, Е - середину СД.
МО=ВК=3 см
АМ=СЕ=ДЕ=4:2=2 см
По т.Пифагора или как гипотенуза равнобедренного ∆ ОЕД –
ОД=2√2.
Р (АМОД)=АД+АМ+МО+ОД=5+2+3+2√2=(10+2√2) см или ≈ 12, 828 см



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili