
Вопрос задан 09.02.2021 в 03:51.
Предмет Геометрия.
Спрашивает Исмагилова Лейла.
В треугольнике ABC AB=BC. На медиане BE отмечена точка M, а на сторонах AB и BC - точки P и K
соответственно. (Точки P, M и K не лежат на одной прямой.) Известно, что угол BMP=углу BMK. Докажите, что а) угол BPM=углу BKM; б) прямые PK и BM взаимно перпендикулярны.

Ответы на вопрос

Отвечает Арсланов Даниил.
По условию АВ=ВС, значит треугольник АВС равнобедренный. Медиана ВЕ в равнобедренном треугольнике проведена к основанию (АЕ=СЕ), значит она является и биссектрисой (<АВЕ=<СВЕ), и высотой. Рассмотрим треугольники РВМ и КВМ - они равны по 2 признаку: сторона ВМ общая, <РВЕ=КВЕ (ВЕ-биссектриса) и <ВМР=<ВМК. Следовательно в равных треугольниках равны и углы <ВРМ=< ВКМ, и стороны МР=МК. Исходя из этого, если рассмотреть треугольник РМК - он равнобедренный, МВ пересекается с основанием РК, также МВ является биссектрисой (<ВМР=<ВМК), значит она является и высотой ( РК и ВМ перпендикулярны)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili