
В окружность вписаны правильные треугольник и четырехугольник. Чему равно отношение сторон
треугольника и четырехугольника?

Ответы на вопрос

Правильный четырехугольник- это квадрат, квадрат вписан в окружность, значит его диагональ является диаметром описанной окружности
Пусть сторона квадрата равна b
тогда
2R=b√2 ⇒ R=b√2/2
Радиус описанной около правильного треугольника окружности выражаем через сторону правильного треугольника а.
Найдем высоту правильного треугольника
h=a·sin 60°=a√3/2
Высота равностороннего треугольника является одновременно и медианой
Медианы в точке пересечения делятся в отношении 2:1, считая от вершины
Точка пересечения медиан правильного треугольника является одновременно и радиусом описанной и радиусом вписанной окружности
R=(2/3)·H=(2/3)·a·(√3/2)=a√3/3
ПОЛЕЗНО ЗАПОМНИТЬ
R=a√3/3
Радиус один и тот же
b√2/2=a√3/3 ⇒ 3b√2=2a√3 a:b=3√2:2√3=√3:√2
Ответ. отношение сторон треугольника и четырехугольника равно √3:√2


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili