Вопрос задан 30.11.2020 в 07:58. Предмет Геометрия. Спрашивает Пригодич Максим.

В треугольниках АВС и МКЕ отрезки СО и ЕН медианы, ВС=КЕ, угол В равен углу К и угол С равен углу

Е. Доказать, что треугольник АСО равен треугольнику МЕН. Помогите пожалуйста
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фёдорова Полина.

В треугольниках ABC и MKE равны два угла (угол К - угол B и угол Е - угол С) и сторона между ними (ВС=КЕ) - треугольники АВС и МКЕ равны между собой. Значит, угол А равен углу М и АС=МЕ.

Медианы делят сторону на 2 равные части. Так как медианы проведены к равным сторонам (СО к АВ, ЕН к МК), то и АО=МН. По 1 признаку (2 стороны и угол между ними) АСО=МЕН, ч. Т. Д.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос