
Вопрос задан 15.06.2018 в 09:27.
Предмет Геометрия.
Спрашивает Неглядеева Полина.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что
площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.

Ответы на вопрос

Отвечает Сухарева Екатерина.
Отметим ΔАВМ и ΔМВС.Ввиду того,что точка М делит основание ΔАВС на 2 равных части,то имея одинаковые основания и равную по величине высоту,опускающуюся из вершины В у обоих Δ,эти треугольники имеют одинаковые объемы.Аналогично докажем и о Δ АМД и ΔДМС.А так,как эти Δ тоже равны,то ΔАВМ=ΔМВС=ΔАМД=ΔДМС;
Что и требовалась доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili