
Вопрос задан 22.11.2020 в 09:01.
Предмет Геометрия.
Спрашивает Sandul Sereoja.
Из точки М к окружности с центром О с радиусом 8 см проведены касательные АМ и ВМ (А и В - точки
касания) . Найдите периметр треугольника АВМ , если угол АОВ = 120 градусов.

Ответы на вопрос

Отвечает Петров Михаил.
В тех же обозначениях рассмотрим прямоугольный треугольник MAO. Угол O у него 120/2 = 60 градусов (в силу с треугольником MBO). Стало быть угол M = 180-90-60 = 30 градусов. Получается что угол AMB = 30+30 = 60 и треугольник MAB равносторонний. Найдем его сторону, которая совпадает с катетом MA треугольника MAO. AO = 8, угол O = 60 градусов и получается, что |MA|/|AO| = tg(60) = корень(3) или |MA| = корень(3)*8. Периметр будет втрое большим P = корень(3)*24 = 41.6 см - какое-то некруглое число! Но вроде бы все правильно


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili