Вопрос задан 16.11.2020 в 10:16. Предмет Геометрия. Спрашивает Козко Софья.

образующая конуса равна L  а радиус основания равен r найдите площадь сечения проходящего через

вершину конуса и хорду основания стягивающую дугу в 90 градусов((прошу подробно написать и желательно с рисунком очень надо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Микульчик Анастасия.
Это будет треугольник, так как сказано что дуга равна 90 гр, то центральный угол АОС равен 90гр , по теореме     Пифагора  AC=\sqrt{2r^2}=r\sqrt{2}
по формуле площадь равна высота на основание, так как у нас треугольник АВС равнобедренный так как образующий равны  L, высота треугольника равна 
H=\sqrt{L^2-\frac{r\sqrt{2}}{2}^2}=\sqrt{\frac{2L^2-2r^2}{4}}=\frac{\sqrt{4L^2-2r^2}}{2}\\
S=r\sqrt{2}*0.5*\frac{\sqrt{4L^2-2r^2}}{2}=r\sqrt{2}*\frac{\sqrt{4L^2-2r^2}}{2}= r\sqrt{2L^2-r^2}

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос