
Вопрос задан 18.10.2020 в 08:47.
Предмет Геометрия.
Спрашивает Лысенко Елизавета.
В шар вписан конус, образующая которого равна диаметру основания . Найдите отношение объема шара к
объему конуса

Ответы на вопрос

Отвечает Ермекбаев Аян.
На рисунке - осевое сечение конуса.
Так как образующая конуса равна диаметру основания, осевое сечение конуса - равносторонний треугольник, вписанный в круг.
Обозначим радиус основания конуса - r,
тогда образующая - 2r,
радиус шара - R,
высоту конуса - h.
Радиус шара - радиус окружности, описанной около правильного треугольника:
R = 2r√3/3
Высота конуса - высота правильного треугольника:
h = 2r√3/2.
Объем шара:
Vш = 4/3 · π R³ = 4/3 · π · (2r√3/3)³ = 4/3 · π · 8r³ · 3√3 / 3 = 32π√3r³ / 27
Объем конуса:
Vк = 1/3 · πr²h = 1/3 · π · r² · 2 · r · √3 /2 = πr³√3 / 3
Vш : Vк = (32π√3r³ / 27) : (πr³√3 / 3) = 32 : 9
Так как образующая конуса равна диаметру основания, осевое сечение конуса - равносторонний треугольник, вписанный в круг.
Обозначим радиус основания конуса - r,
тогда образующая - 2r,
радиус шара - R,
высоту конуса - h.
Радиус шара - радиус окружности, описанной около правильного треугольника:
R = 2r√3/3
Высота конуса - высота правильного треугольника:
h = 2r√3/2.
Объем шара:
Vш = 4/3 · π R³ = 4/3 · π · (2r√3/3)³ = 4/3 · π · 8r³ · 3√3 / 3 = 32π√3r³ / 27
Объем конуса:
Vк = 1/3 · πr²h = 1/3 · π · r² · 2 · r · √3 /2 = πr³√3 / 3
Vш : Vк = (32π√3r³ / 27) : (πr³√3 / 3) = 32 : 9



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili