
Вопрос задан 12.06.2018 в 17:43.
Предмет Геометрия.
Спрашивает Матусевич Алеся.
В равнобедренном треугольнике ABC с равными сторонами AB и BC окружность, проходящая через вершины
B,C и середину K стороны AB, пересекает прямую, содержащую высоту BH, в точке L. Докажите, что треугольник AKL равнобедренный.

Ответы на вопрос

Отвечает Штукина Катя.
Точка L равноудалена от A и C, потому что лежит на прямой, перпендикулярной AC и проходящей через его середину.
То есть AL = LC;
Дуги KL и LC равны, поскольку равны вписанные углы KBL и LBC.
Поэтому равны и хорды KL = LC.
Отсюда AL = KL
В решении ни где не использовано, что точка K - середина AB. Да это и не играет роли, где бы на АВ она не находилась (и даже на продолжении луча BA за точку A), все равно KL = AL. То есть все, что надо - что точки B C L и K лежат на одной окружности (ну, и точка K лежит на луче BA с началом в точке B, а L - на биссектрисе угла ABC).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili