Вопрос задан 07.09.2020 в 05:14. Предмет Алгебра. Спрашивает Крамм Виктория.

Теплоход против течения реки за 5 часов проплыл такое же расстояние, что и за 3 часа по течению.

Чему равна собственная скорость теплохода, если скорость течения реки 3,8км\ч?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a boat traveled the same distance against the current of a river in 5 hours as it did with the current in 3 hours. We need to determine the boat's own speed if the speed of the river's current is 3.8 km/h.

Solution

Let's assume the boat's own speed is x km/h.

When the boat is traveling against the current, its effective speed is the difference between its own speed and the speed of the current. So, the effective speed is (x - 3.8) km/h.

Similarly, when the boat is traveling with the current, its effective speed is the sum of its own speed and the speed of the current. So, the effective speed is (x + 3.8) km/h.

We are given that the boat traveled the same distance in both cases. Let's denote the distance as d km.

Using the formula speed = distance / time, we can set up the following equations:

1. When traveling against the current: (x - 3.8) = d / 5 2. When traveling with the current: (x + 3.8) = d / 3

We can solve these equations to find the value of x.

Solving the Equations

Let's solve the equations using algebraic manipulation.

From equation 1, we have x - 3.8 = d / 5. Rearranging the equation, we get d = 5(x - 3.8).

Substituting this value of d into equation 2, we have (x + 3.8) = (5(x - 3.8)) / 3.

Simplifying the equation, we get 3(x + 3.8) = 5(x - 3.8).

Expanding and rearranging the equation, we have 3x + 11.4 = 5x - 19.

Simplifying further, we get 2x = 30.4.

Dividing both sides of the equation by 2, we find x = 15.2.

Answer

Therefore, the boat's own speed is 15.2 km/h when the speed of the river's current is 3.8 km/h.

Conclusion

In this problem, we used the concept of relative speed to determine the boat's own speed when traveling against and with the current of a river. By setting up and solving equations, we found that the boat's own speed is 15.2 km/h.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос