Вопрос задан 21.01.2020 в 07:32. Предмет Алгебра. Спрашивает Силинский Юрий.

Y=2x^2+5x+2 Исследовать функцию Решить задачу

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чистяков Владик.

Точек перегиба нет

 

6) Асимптот нет

7) Непериодическая

8) Построим график (во вложении)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Function Analysis

The given function is Y = 2x^2 + 5x + 2. Let's analyze this function step by step.

1. Degree of the Function: The degree of the function is the highest power of x in the function. In this case, the highest power of x is 2, so the degree of the function is 2.

2. Vertex: The vertex of a quadratic function in the form of y = ax^2 + bx + c can be found using the formula x = -b/2a. In this case, a = 2, b = 5, and c = 2. Plugging these values into the formula, we get x = -5/(2*2) = -5/4. To find the y-coordinate of the vertex, we substitute this value of x back into the function: y = 2*(-5/4)^2 + 5*(-5/4) + 2. Evaluating this expression, we get y = 2.25. Therefore, the vertex of the function is (-5/4, 2.25).

3. Axis of Symmetry: The axis of symmetry is a vertical line that passes through the vertex of the function. In this case, the axis of symmetry is the line x = -5/4.

4. Discriminant: The discriminant of a quadratic function in the form of y = ax^2 + bx + c is given by the formula D = b^2 - 4ac. In this case, a = 2, b = 5, and c = 2. Plugging these values into the formula, we get D = 5^2 - 4*2*2 = 25 - 16 = 9. The discriminant is positive, which means the function has two distinct real roots.

5. Roots: The roots of a quadratic function can be found using the quadratic formula x = (-b ± √D) / (2a). In this case, a = 2, b = 5, and c = 2. Plugging these values into the formula, we get x = (-5 ± √9) / (2*2) = (-5 ± 3) / 4. Simplifying further, we get x1 = -2/4 = -1/2 and x2 = -8/4 = -2. Therefore, the roots of the function are x = -1/2 and x = -2.

6. Y-Intercept: The y-intercept is the point where the function intersects the y-axis. To find the y-intercept, we substitute x = 0 into the function: y = 2*0^2 + 5*0 + 2 = 2. Therefore, the y-intercept of the function is (0, 2).

7. Increasing and Decreasing Intervals: To determine the intervals where the function is increasing or decreasing, we need to examine the sign of the coefficient of x^2, which is positive in this case (a = 2). Since the coefficient is positive, the function is increasing for all values of x.

8. Concavity: The concavity of a quadratic function can be determined by examining the sign of the coefficient of x^2. In this case, the coefficient is positive (a = 2), which means the function is concave up.

Solution to the Problem

Unfortunately, the problem statement is not clear. If you can provide more details or clarify the problem, I would be happy to help you solve it.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос