
Для множества А=[1;5], B=[4;] и С=(-3;2] найдите множеств (А ∪ B)∩C . Помогите пожалуйста решить и
с объяснением , Завтра уже сдавать ! Помогите!!!!!!

Ответы на вопрос

Объединение А и В(т.е. нам нужно объединить/сложить эти два промежутка в один) = А∪В=[1;5]∪[4;6]=[1;6]
+ + +
-----------[1]----------[4]----[5]-----[6]--------------
пересечение (А∪В)∩С (т.е нужно из данных промежутков выбрать те участки, в которых промежутки одинаковы) = [1;6]∩(-3;2]=[1,2]
Ответ: [1,2]



Конечно, давайте разберемся с этим математическим выражением.
Обозначения: - \(A = [1;5]\) - множество всех чисел от 1 до 5 включительно, - \(B = [4;+\infty)\) - множество всех чисел от 4 и выше, - \(C = (-3;2]\) - множество всех чисел от -3 (не включая -3) до 2 включительно.
Первым шагом найдем объединение множеств \(A\) и \(B\) (\(A \cup B\)). Это множество содержит все элементы, которые принадлежат хотя бы одному из множеств \(A\) или \(B\). Так как \(B\) начинается с 4, то объединение \(A \cup B\) будет содержать все числа от 1 до 5 (из \(A\)), а также все числа от 4 и выше (из \(B\)). Таким образом, \(A \cup B = [1;+\infty)\).
Теперь найдем пересечение полученного множества \(A \cup B\) с множеством \(C\) (\((A \cup B) \cap C\)). Это множество содержит только те элементы, которые принадлежат и \(A \cup B\), и \(C\). Так как \(A \cup B\) содержит все числа от 1 до \(\infty\), а \(C\) содержит числа от -3 до 2 включительно, пересечение будет содержать числа от 1 до 2 включительно (так как 1, 2 принадлежат и \(A \cup B\), и \(C\)).
Таким образом, \((A \cup B) \cap C = [1;2]\).
Итак, множество \((A \cup B) \cap C\) равно отрезку чисел от 1 до 2 включительно. Надеюсь, это помогло, и удачи вам со сдачей!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili