
X^2-2x-3 больше или равно 0 решить надо методом интервала


Ответы на вопрос

x^2 - 2x - 3 = 0 - Приравняли к нулю.
D= b^2 - 4ac = ( - 2) ^2 - 4 * 1 *( -3) = 4+12=16
√D=4
x1 = 2 + 4 / 2 = 3
x2 = 2 - 4 / 2 = - 1
Рисунок во вложении.
Ответ: x ∈ ( - ∞ ; - 1 ] U [ 3 ; + ∞ )



Solving the Equation Using the Interval Method
To solve the equation x^2 - 2x - 3 ≥ 0 using the interval method, we need to find the intervals where the equation is greater than or equal to zero.
Let's break down the process step by step:
1. Find the critical points of the equation by setting it equal to zero and solving for x: x^2 - 2x - 3 = 0
To solve this quadratic equation, we can factor it or use the quadratic formula. Factoring the equation, we get: (x - 3)(x + 1) = 0
Setting each factor equal to zero, we find the critical points: x - 3 = 0 or x + 1 = 0 x = 3 or x = -1
Therefore, the critical points are x = 3 and x = -1.
2. Determine the intervals using the critical points: We can divide the number line into three intervals based on the critical points: (-∞, -1), (-1, 3), and (3, +∞).
3. Test a point within each interval to determine the sign of the equation: - For the interval (-∞, -1), we can choose x = -2 as a test point. Substituting this value into the equation, we get: (-2)^2 - 2(-2) - 3 = 4 + 4 - 3 = 5
Since the result is positive, the equation is greater than zero in this interval.
- For the interval (-1, 3), we can choose x = 0 as a test point. Substituting this value into the equation, we get: 0^2 - 2(0) - 3 = -3
Since the result is negative, the equation is less than zero in this interval.
- For the interval (3, +∞), we can choose x = 4 as a test point. Substituting this value into the equation, we get: 4^2 - 2(4) - 3 = 16 - 8 - 3 = 5
Since the result is positive, the equation is greater than zero in this interval.
4. Determine the solution: Based on the signs of the equation in each interval, we can conclude that the equation x^2 - 2x - 3 ≥ 0 is true for the intervals (-∞, -1) and (3, +∞).
Therefore, the solution to the equation using the interval method is: x ≤ -1 or x ≥ 3.
Please note that the solution is inclusive of the critical points (-1 and 3) because the equation is greater than or equal to zero.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili