
Найти первообразную функции корень из x+x^1/3


Ответы на вопрос

F(√x+x^1/3) = 2/3 x^3/2 +3/4 x^4/3



Finding the Antiderivative of \( \sqrt{x} \cdot x^{\frac{1}{3}} \)
To find the antiderivative of \( \sqrt{x} \cdot x^{\frac{1}{3}} \), we can use the properties of derivatives and the power rule for integration. Let's break down the process step by step.
1. Rewrite the Function: We can rewrite \( \sqrt{x} \) as \( x^{\frac{1}{2}} \). Therefore, the function becomes: \[ x^{\frac{1}{2}} \cdot x^{\frac{1}{3}} \]
2. Combine the Terms: Using the properties of exponents, we can combine the terms: \[ x^{\frac{1}{2}} \cdot x^{\frac{1}{3}} = x^{\frac{1}{2} + \frac{1}{3}} = x^{\frac{5}{6}} \]
3. Apply the Power Rule for Integration: The power rule for integration states that for any real number \( n \neq -1 \), the antiderivative of \( x^n \) with respect to \( x \) is \( \frac{x^{n+1}}{n+1} + C \), where \( C \) is the constant of integration.
Therefore, the antiderivative of \( x^{\frac{5}{6}} \) is: \[ \int x^{\frac{5}{6}} \, dx = \frac{6}{11}x^{\frac{11}{6}} + C \]
Where \( C \) is the constant of integration.
4. Final Result: The antiderivative of \( \sqrt{x} \cdot x^{\frac{1}{3}} \) is: \[ \frac{6}{11}x^{\frac{11}{6}} + C \]
Where \( C \) is the constant of integration.
Conclusion
The antiderivative of \( \sqrt{x} \cdot x^{\frac{1}{3}} \) is \( \frac{6}{11}x^{\frac{11}{6}} + C \), where \( C \) is the constant of integration.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili