
Найти F(х):а) f(x)=2x^2-3x+5б) f(x)=1/x-1/√xв) f(x)=cosx+2sinxг) f(x)= e^x+2^x


Ответы на вопрос




a) f(x) = 2x^2 - 3x + 5
To find the function F(x) for f(x) = 2x^2 - 3x + 5, we can use the power rule of integration. The power rule states that if we have a term of the form x^n in the integrand, then the integral of x^n with respect to x is (1/(n+1)) * x^(n+1) + C, where C is the constant of integration.
In this case, we have f(x) = 2x^2 - 3x + 5. To find F(x), we integrate each term separately:
∫(2x^2) dx = (2/3)x^3 + C1, where C1 is the constant of integration for the first term.
∫(-3x) dx = (-3/2)x^2 + C2, where C2 is the constant of integration for the second term.
∫(5) dx = 5x + C3, where C3 is the constant of integration for the third term.
Combining these results, we get:
F(x) = (2/3)x^3 - (3/2)x^2 + 5x + C, where C = C1 + C2 + C3 is the constant of integration for the entire function.
So, the function F(x) for f(x) = 2x^2 - 3x + 5 is F(x) = (2/3)x^3 - (3/2)x^2 + 5x + C.
b) f(x) = 1/x - 1/√x
To find the function F(x) for f(x) = 1/x - 1/√x, we can use the power rule of integration, as well as the rule for integrating the reciprocal of a function.
First, let's rewrite the function as f(x) = x^(-1) - x^(-1/2).
Integrating each term separately:
∫(x^(-1)) dx = ln|x| + C1, where C1 is the constant of integration for the first term.
∫(x^(-1/2)) dx = 2x^(1/2) + C2, where C2 is the constant of integration for the second term.
Combining these results, we get:
F(x) = ln|x| + 2x^(1/2) + C, where C = C1 + C2 is the constant of integration for the entire function.
So, the function F(x) for f(x) = 1/x - 1/√x is F(x) = ln|x| + 2x^(1/2) + C.
c) f(x) = cos(x) + 2sin(x)
To find the function F(x) for f(x) = cos(x) + 2sin(x), we can use the trigonometric identities and the rules for integrating trigonometric functions.
The integral of cos(x) is sin(x) + C1, where C1 is the constant of integration for the first term.
The integral of sin(x) is -cos(x) + C2, where C2 is the constant of integration for the second term.
Combining these results, we get:
F(x) = sin(x) - cos(x) + C, where C = C1 + C2 is the constant of integration for the entire function.
So, the function F(x) for f(x) = cos(x) + 2sin(x) is F(x) = sin(x) - cos(x) + C.
d) f(x) = e^x + 2^x
To find the function F(x) for f(x) = e^x + 2^x, we can use the rule for integrating exponential functions.
The integral of e^x is e^x + C1, where C1 is the constant of integration for the first term.
The integral of 2^x can be found using the substitution method or the rule for integrating exponential functions.
If we use the substitution method, we can let u = 2^x, then du = ln(2) * 2^x dx. Rearranging, dx = (1/ln(2)) * (1/u) du.
Substituting these values into the integral, we get:
∫(2^x) dx = ∫(u) * (1/ln(2)) * (1/u) du = (1/ln(2)) ∫(1) du = (1/ln(2)) * u + C2, where C2 is the constant of integration for the second term.
Substituting u = 2^x back in, we have:
∫(2^x) dx = (1/ln(2)) * 2^x + C2.
Combining these results, we get:
F(x) = e^x + (1/ln(2)) * 2^x + C, where C = C1 + C2 is the constant of integration for the entire function.
So, the function F(x) for f(x) = e^x + 2^x is F(x) = e^x + (1/ln(2)) * 2^x + C.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili