
при каком значении а уравнение ax в квадрате -6x +3=0 имеет только один корень


Ответы на вопрос




Solving the Equation for a Single Root
To find the condition under which the equation \(ax^2 - 6x + 3 = 0\) has only one root, we can use the discriminant of the quadratic equation. The discriminant, denoted by \(D\), is given by the formula:
\(D = b^2 - 4ac\)
Where: - \(a\) is the coefficient of \(x^2\) - \(b\) is the coefficient of \(x\) - \(c\) is the constant term
For the equation \(ax^2 - 6x + 3 = 0\), we have: - \(a = a\) - \(b = -6\) - \(c = 3\)
Applying the Discriminant Formula
The discriminant \(D\) determines the nature of the roots of a quadratic equation. If \(D > 0\), the equation has two distinct real roots. If \(D = 0\), the equation has exactly one real root. If \(D < 0\), the equation has no real roots.
Calculating the Discriminant for the Given Equation
Using the formula for the discriminant, we can calculate \(D\) for the given equation:
\(D = (-6)^2 - 4 \cdot a \cdot 3\)
Conclusion
For the equation \(ax^2 - 6x + 3 = 0\) to have only one root, the discriminant \(D\) must be equal to zero.
Therefore, the condition for the equation \(ax^2 - 6x + 3 = 0\) to have only one root is that the discriminant \(D\) equals zero.
[[SOURCE #4]]


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili