
А) b(6), если b(1) = 125 b(3) = 5 б) b(7), если b(1) = -2/9, b(3) = -2 в) b(1), если b(4) = -1,
b(6) = -100 ребят плизззззз засада эти прогрессии

Ответы на вопрос

а) b(6), если b(1) = 125 b(3) = 5
b3=b1*q^2 q^2=5/125=1/25
q1=-1/5 b6=b1*q^5=5^3*-5^-5=-1/25
q2=1/5 b6=1/25
б) b(7), если b(1) = -2/9, b(3) = -2
q^2=b3/b1=-2*-9/2=9
q1=-3 q2=3
b7=b1*q^6=-2/9*3^6=-2*3^4=-2*81=-162
в) b(1), если b(4) = -1, b(6) = -100
b6=b4*q^2 q^2=-100/-1=100
q1=-10 b1=b4/q^3=-1/-1000=0.001
q2=10 b1=-0.001



Task A
To find the value of b(6) when b(1) = 125 and b(3) = 5, we can use the formula for the nth term of a geometric progression. The formula is given by:\[ b(n) = b(1) \times q^{(n-1)} \]
Where: - \( b(n) \) is the nth term - \( b(1) \) is the first term - \( q \) is the common ratio - \( n \) is the term number
Using the given values: - \( b(1) = 125 \) - \( b(3) = 5 \)
We can solve for the common ratio \( q \) using the formula:
\[ b(3) = b(1) \times q^{(3-1)} \] \[ 5 = 125 \times q^2 \] \[ q^2 = \frac{5}{125} \] \[ q^2 = \frac{1}{25} \] \[ q = \pm \frac{1}{5} \]
Now, we can find the value of b(6) using the common ratio \( q = \pm \frac{1}{5} \):
\[ b(6) = 125 \times \left(\pm \frac{1}{5}\right)^{5} \]
The value of \( b(6) \) will depend on the specific value of the common ratio \( q \).
Task B
To find the value of b(7) when b(1) = -2/9 and b(3) = -2, we can use the same formula for the nth term of a geometric progression:\[ b(n) = b(1) \times q^{(n-1)} \]
Using the given values: - \( b(1) = -\frac{2}{9} \) - \( b(3) = -2 \)
We can solve for the common ratio \( q \) using the formula:
\[ b(3) = b(1) \times q^{(3-1)} \] \[ -2 = -\frac{2}{9} \times q^2 \] \[ q^2 = \frac{2}{9} \] \[ q = \pm \sqrt{\frac{2}{9}} \]
Now, we can find the value of b(7) using the common ratio \( q = \pm \sqrt{\frac{2}{9}} \):
\[ b(7) = -\frac{2}{9} \times \left(\pm \sqrt{\frac{2}{9}}\right)^{6} \]
The value of \( b(7) \) will depend on the specific value of the common ratio \( q \).
Task C
To find the value of b(1) when b(4) = -1 and b(6) = -100, we can use the formula for the nth term of a geometric progression:\[ b(n) = b(1) \times q^{(n-1)} \]
Using the given values: - \( b(4) = -1 \) - \( b(6) = -100 \)
We can solve for the common ratio \( q \) using the formula:
\[ b(6) = b(1) \times q^{(6-1)} \] \[ -100 = b(1) \times q^5 \]
We can then solve for \( b(1) \) using the value of the common ratio \( q \):
\[ b(1) = -\frac{100}{q^5} \]
The value of \( b(1) \) will depend on the specific value of the common ratio \( q \).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili