
Вопрос задан 15.01.2019 в 16:18.
Предмет Алгебра.
Спрашивает Носко Саша.
Помогите пожалуйста, срочно нужно!:с Решите уравнение 2sin^2x+3sinx-2=0 и найдите решение на
отрезке [0;3pi].

Ответы на вопрос

Отвечает Качуровский Вадим.
2sin²x+3sinx-2=0
sinx=t
2t²+3t-2=0
t²+3t/2-1=0
(t-1/2)(t+2)=0
t=1/2⇒sinx=1/2⇒1)x=π/6+2πn;2)x=5π/6+2πn
t=-2⇒не подходит, так как -1≤sinx≤1
решения на отрезке [0;3π]: π/6, 5π/6, 13π/6, 17π/6
sinx=t
2t²+3t-2=0
t²+3t/2-1=0
(t-1/2)(t+2)=0
t=1/2⇒sinx=1/2⇒1)x=π/6+2πn;2)x=5π/6+2πn
t=-2⇒не подходит, так как -1≤sinx≤1
решения на отрезке [0;3π]: π/6, 5π/6, 13π/6, 17π/6



Отвечает Вакилов Влад.
Второй корень уравнение не принадлежит промежутку
Отберем корни принадлежащие промежутку:


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili