
1)sin6x+sin4x=cosx 2)cosx-√3sinx=√2 3)cos2x=cosx*cos3x помогите решить пожалуйста,срочно!!!))


Ответы на вопрос

½cosx-√3/2sinx=√2/2
½=sin(π/6); √3/2=cos(π/6)
sin(π/6)cosx-cos(π/6)sinx=√2/2
sin(x-π/6)=-√2/2
x-π/6=(-1)^n•arcsin(-√2/2)+ πn
x-π/6=(-1)^(n+1)•arcsin(√2/2)+ πn
x=(-1)^(n+1)•π/4+π/6+ πn



Equation 1: sin(6x) + sin(4x) = cos(x)
To solve the equation sin(6x) + sin(4x) = cos(x), we can use trigonometric identities and algebraic manipulation.
First, let's rewrite the equation using trigonometric identities: sin(6x) + sin(4x) = cos(x) 2sin(5x)cos(x) = cos(x)
Now, we can simplify the equation by canceling out the common factor of cos(x): 2sin(5x) = 1
To isolate sin(5x), divide both sides of the equation by 2: sin(5x) = 1/2
To find the values of x that satisfy this equation, we can use the inverse sine function (sin^(-1)): 5x = sin^(-1)(1/2)
Using a calculator, we can find the principal value of sin^(-1)(1/2) to be π/6 or approximately 0.5236 radians.
Now, we can solve for x by dividing both sides of the equation by 5: x = (π/6) / 5
Therefore, the solution to the equation sin(6x) + sin(4x) = cos(x) is x = (π/6) / 5.
Equation 2: cos(x) - √3sin(x) = √2
To solve the equation cos(x) - √3sin(x) = √2, we can again use trigonometric identities and algebraic manipulation.
First, let's rewrite the equation using trigonometric identities: cos(x) - √3sin(x) = √2
Now, we can rearrange the equation to isolate sin(x): √3sin(x) = cos(x) - √2
Next, we can square both sides of the equation to eliminate the square root: 3sin^2(x) = cos^2(x) - 2√2cos(x) + 2
Using the identity sin^2(x) + cos^2(x) = 1, we can substitute it into the equation: 3(1 - cos^2(x)) = cos^2(x) - 2√2cos(x) + 2
Expanding and rearranging the equation, we get: 3cos^2(x) - 2√2cos(x) - 1 = 0
Now, we have a quadratic equation in terms of cos(x). We can solve this equation using the quadratic formula: cos(x) = [2√2 ± √(8 + 12)] / (2 * 3)
Simplifying the equation further, we get: cos(x) = (√2 ± √5) / 3
Using a calculator, we can find the values of cos(x) to be approximately 0.934 and -0.401.
To find the corresponding values of x, we can use the inverse cosine function (cos^(-1)): x = cos^(-1)((√2 ± √5) / 3)
Therefore, the solutions to the equation cos(x) - √3sin(x) = √2 are x = cos^(-1)((√2 + √5) / 3) and x = cos^(-1)((√2 - √5) / 3).
Equation 3: cos(2x) = cos(x) * cos(3x)
To solve the equation cos(2x) = cos(x) * cos(3x), we can again use trigonometric identities and algebraic manipulation.
First, let's rewrite the equation using trigonometric identities: cos(2x) = cos(x) * cos(3x)
Now, we can use the double-angle identity for cosine: 2cos^2(x) - 1 = cos(x) * (4cos^3(x) - 3cos(x))
Expanding and rearranging the equation, we get: 2cos^2(x) - 1 = 4cos^4(x) - 3cos^2(x)
Combining like terms, we have: 4cos^4(x) - 5cos^2(x) + 1 = 0
Now, we have a quadratic equation in terms of cos^2(x). We can solve this equation by factoring: (2cos^2(x) - 1)(2cos^2(x) - 1) = 0
Taking the square root of both sides, we get: 2cos^2(x) - 1 = 0
Solving for cos(x), we have: cos(x) = ±√(1/2)
Using a calculator, we can find the values of cos(x) to be approximately ±0.707.
To find the corresponding values of x, we can use the inverse cosine function (cos^(-1)): x = cos^(-1)(±√(1/2))
Therefore, the solutions to the equation cos(2x) = cos(x) * cos(3x) are x = cos^(-1)(√(1/2)) and x = cos^(-1)(-√(1/2)).
Please note that these solutions are approximate values, and there may be other solutions depending on the range of x specified.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili