
Найти область определения функции у= корень из х+4 + корень из 2х+3


Ответы на вопрос








Finding the Domain of the Function y = √(x^4) + √(2x^3)
To find the domain of the function y = √(x^4) + √(2x^3), we need to determine the values of x for which the function is defined. The domain of a function is the set of all possible input values (x) for which the function produces real output values (y).
The function y = √(x^4) + √(2x^3) involves square roots, and the radicand (expression under the square root) must be non-negative for real number outputs. Therefore, we need to consider the domain of each individual square root expression.
1. Domain of √(x^4): - The expression inside the square root, x^4, is a fourth power, which means it is always non-negative for real numbers. Therefore, the domain of √(x^4) is all real numbers.
2. Domain of √(2x^3): - The expression inside the square root, 2x^3, must also be non-negative for real outputs. This means that 2x^3 ≥ 0, which implies x ≥ 0. Therefore, the domain of √(2x^3) is all real numbers greater than or equal to 0.
Combining the Domains
Since both √(x^4) and √(2x^3) have domains of all real numbers, the combined domain of the function y = √(x^4) + √(2x^3) is also all real numbers.Therefore, the domain of the function y = √(x^4) + √(2x^3) is all real numbers. This means that the function is defined for any real value of x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili