
8sin2x - 16cosx = 0 Помогите пожалуйста.


Ответы на вопрос




Solving the Equation 8sin(2x) - 16cos(x) = 0
To solve the equation 8sin(2x) - 16cos(x) = 0, we can use trigonometric identities to simplify and solve for the value of x.
First, let's express the sine and cosine functions in terms of a single trigonometric function using the double-angle identity for sine and the Pythagorean identity for cosine.
The double-angle identity for sine is: sin(2x) = 2sin(x)cos(x)
The Pythagorean identity for cosine is: cos^2(x) + sin^2(x) = 1
We can use these identities to simplify the given equation.
Applying Trigonometric Identities
Using the double-angle identity for sine, we can rewrite the equation as: 8(2sin(x)cos(x)) - 16cos(x) = 0
Factoring out 8 and rearranging, we get: 16sin(x)cos(x) - 16cos(x) = 0
Now, we can factor out 16cos(x) from the terms: 16cos(x)(sin(x) - 1) = 0
Finding Solutions
From the factored form, we can see that the equation has two possible solutions: 1. 16cos(x) = 0 2. sin(x) - 1 = 0
Let's solve for x in each case.
Solution 1: 16cos(x) = 0
For the first case, when 16cos(x) = 0, we can solve for x by finding the values of x where cosine is equal to 0. This occurs at x = π/2 + nπ, where n is an integer.Solution 2: sin(x) - 1 = 0
For the second case, when sin(x) - 1 = 0, we can solve for x by finding the values of x where sine is equal to 1. This occurs at x = π/2 + 2nπ, where n is an integer.Conclusion
Therefore, the solutions to the equation 8sin(2x) - 16cos(x) = 0 are: - x = π/2 + nπ, where n is an integer - x = π/2 + 2nπ, where n is an integer

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili