
Log x+2(2x^2-5x+18)=2 через одз


Ответы на вопрос

Смотри..................




To solve the equation using the domain (ODZ), we need to follow these steps:
Step 1: Identify the domain of the equation. Step 2: Solve the equation within the given domain.
Step 1: Domain of the equation () For the equation to be valid, the argument of the logarithm must be positive, as the logarithm is only defined for positive values. Therefore, the domain () of the equation is .
Step 2: Solve the equation within the given domain. Now, let's solve the equation:
First, simplify the expression by distributing the 2 on the right side:
Next, bring all terms to one side of the equation:
Now, let's focus on solving for within the domain :
Since the logarithm term is , we need to use logarithmic properties to simplify the equation further. Recall the logarithmic property:
is equivalent to
In our equation, (common logarithm).
Therefore, we can rewrite the equation as:
Now, the equation becomes:
To solve this quadratic equation, we need to find the roots:
The solutions for are obtained using the quadratic formula:
where , , and .
Now, calculate the discriminant ():
Since the discriminant () is negative, the quadratic equation has no real solutions within the domain . Thus, there are no solutions to the equation in the given domain ().


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili