
(tga+ctga)*(1-cos4a)=4sin2a


Ответы на вопрос





To verify the given trigonometric identity (tga+ctga)*(1-cos4a) = 4sin2a, we'll simplify both sides step by step:
- Rewrite ctga as cot(a) (cotangent is the reciprocal of tangent).
- Expand the left-hand side (LHS) using the distributive property.
- Apply trigonometric identities to simplify the expression.
Starting with the left-hand side (LHS):
LHS = (tga + cot(a)) * (1 - cos(4a))
Now, we'll use the following trigonometric identities:
- tan(a) = sin(a) / cos(a)
- cot(a) = 1 / tan(a) = cos(a) / sin(a)
- cos(2a) = 1 - 2sin^2(a)
- cos(4a) = 1 - 2sin^2(2a)
Step 1: Substitute ctga with cot(a):
LHS = (tan(a) + cot(a)) * (1 - cos(4a))
Step 2: Expand using the distributive property:
LHS = tan(a) - tan(a)cos(4a) + cot(a) - cot(a)cos(4a)
Step 3: Substitute cot(a) with cos(a)/sin(a) and apply the double angle formula for cosine:
LHS = sin(a)/cos(a) - sin(a)/cos(a) * (1 - 2sin^2(2a)) + cos(a)/sin(a) - cos(a)/sin(a) * (1 - 2sin^2(2a))
Step 4: Find a common denominator (cos(a)sin(a)) for both fractions:
LHS = (sin(a)sin(a) - sin(a)sin(a)(1 - 2sin^2(2a)) + cos(a)cos(a) - cos(a)cos(a)(1 - 2sin^2(2a))) / (cos(a)sin(a))
Step 5: Simplify the terms:
LHS = (sin^2(a) + 2sin^2(2a)sin^2(a) + cos^2(a) + 2sin^2(2a)cos^2(a)) / (cos(a)sin(a))
Step 6: Apply the identity sin^2(x) + cos^2(x) = 1:
LHS = (1 + 2sin^2(2a)sin^2(a) + 2sin^2(2a)cos^2(a)) / (cos(a)sin(a))
Step 7: Apply the double angle formula for sine:
sin(2x) = 2sin(x)cos(x)
sin^2(2a) = (2sin(a)cos(a))^2 = 4sin^2(a)cos^2(a)
LHS = (1 + 2 * 4sin^2(a)cos^2(a)sin^2(a) + 2sin^2(2a)cos^2(a)) / (cos(a)sin(a))
Step 8: Combine terms:
LHS = (1 + 8sin^4(a)cos^2(a) + 2sin^2(2a)cos^2(a)) / (cos(a)sin(a))
Step 9: Apply the double angle formula for sine again:
sin(2x) = 2sin(x)cos(x)
sin^2(2a) = (2sin(a)cos(a))^2 = 4sin^2(a)cos^2(a)
LHS = (1 + 8sin^4(a)cos^2(a) + 2 * 4sin^2(a)cos^2(a) * cos^2(a)) / (cos(a)sin(a))
Step 10: Simplify further:
LHS = (1 + 8sin^4(a)cos^2(a) + 8sin^2(a)cos^4(a)) / (cos(a)sin(a))
Step 11: Apply the Pythagorean identity sin^2(x) + cos^2(x) = 1:
LHS = (1 + 8sin^4(a)(1 - sin^2(a)) + 8sin^2(a)(1 - sin^2(a))) / (cos(a)sin(a))
Step 12: Simplify again:
LHS = (1 + 8sin^4(a) - 8sin^6(a) + 8sin^2(a) - 8sin^4(a)) / (cos(a)sin(a))
Step 13: Combine like terms:
LHS = (1 + 8sin^2(a) - 8sin^6(a)) / (cos(a)sin(a))
Step 14: Apply the trigonometric identity sin^2(x) + cos^2(x) = 1:
LHS = (1 + 8sin^2(a) - 8sin^6(a)) / (cos(a)sin(a))
Step 15: Apply the double angle formula for sine:
sin(2x) = 2sin(x)cos(x)
2sin^2(a)cos(a) = sin(2a)
LHS = (1 + 8sin^2(a) - 8sin^6(a)) / (sin(2a))
Step 16: Apply the identity sin^2(x) = 1 - cos^2(x):
sin^2(a) = 1 - cos^2(a)
LHS = (1 + 8(1 - cos^2(a)) - 8(1 - cos^2(a))^3) / (sin(2a))
Step 17: Expand the terms:
LHS = (1 + 8 - 8cos^2(a) - 8(1 - 3cos^2(a) + 3cos^4(a) - cos^6(a))) / (sin(2a))
Step 18: Combine like terms:
LHS = (9 - 8cos^2(a) - 24cos^2(a) + 24cos^4(a) - 8cos^6(a)) / (sin(2a))
Step 19: Simplify further:
LHS = (9 - 32cos^2(a) + 24cos^4(a) - 8cos^6(a)) / (sin(2a))
Now, the left-hand side (LHS) is simplified. Let's simplify the right-hand side (RHS) of the identity, which is 4sin^2(a):
RHS = 4sin^2(a)
The given identity is tga+ctga)*(1-cos4a) = 4sin2a
Comparing the LHS and RHS, we see that they are not equal. Therefore, the given trigonometric identity is not valid. There might be an error or a mistake in the original expression provided. Please recheck the identity, or let me know if you have any other questions!


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili