
|1-2x|+|3x+2|+|x|=5


Ответы на вопрос

Ответ:
x=1/3
Объяснение:
По правилам модуля
1+2x+3x+2+x=5
6x+3=5
x=2/6
x=1/3



To solve the equation |1-2x| + |3x+2| + |x| = 5, we need to consider different cases based on the absolute value expressions.
Case 1: (1-2x) ≥ 0, (3x+2) ≥ 0, and (x) ≥ 0 In this case, all three absolute value expressions are positive, so we can rewrite the equation without the absolute value signs: (1 - 2x) + (3x + 2) + x = 5 Now, solve for x: 1 - 2x + 3x + 2 + x = 5 4x + 3 = 5 4x = 5 - 3 4x = 2 x = 2/4 x = 1/2
However, we need to check if this solution satisfies the conditions for Case 1: 1 - 2x ≥ 0 1 - 2(1/2) ≥ 0 1 - 1 ≥ 0 0 ≥ 0 (True)
3x + 2 ≥ 0 3(1/2) + 2 ≥ 0 3/2 + 2 ≥ 0 7/2 ≥ 0 (True)
x ≥ 0 (True)
Since all three conditions are satisfied, x = 1/2 is a valid solution for Case 1.
Case 2: (1-2x) < 0, (3x+2) ≥ 0, and (x) ≥ 0 In this case, the first absolute value expression is negative, and the other two are positive, so we can rewrite the equation as follows: -(1 - 2x) + (3x + 2) + x = 5 Now, solve for x: -1 + 2x + 3x + 2 + x = 5 6x + 1 = 5 6x = 5 - 1 6x = 4 x = 4/6 x = 2/3
However, we need to check if this solution satisfies the conditions for Case 2: 1 - 2x < 0 1 - 2(2/3) < 0 1 - 4/3 < 0 -1/3 < 0 (True)
3x + 2 ≥ 0 3(2/3) + 2 ≥ 0 2 + 2 ≥ 0 4 ≥ 0 (True)
x ≥ 0 (True)
Since all three conditions are satisfied, x = 2/3 is a valid solution for Case 2.
Case 3: (1-2x) < 0, (3x+2) < 0, and (x) ≥ 0 In this case, all three absolute value expressions are negative, so we can rewrite the equation as follows: -(1 - 2x) - (3x + 2) + x = 5 Now, solve for x: -1 + 2x - 3x - 2 + x = 5 -x - 3 = 5 -x = 5 + 3 -x = 8 x = -8 (but x ≥ 0 condition is violated)
Since x cannot be negative in this case, there are no valid solutions for Case 3.
Case 4: (1-2x) < 0, (3x+2) < 0, and (x) < 0 In this case, all three absolute value expressions are negative, so we can rewrite the equation as follows: -(1 - 2x) - (3x + 2) - x = 5 Now, solve for x: -1 + 2x - 3x - 2 - x = 5 -2x - 3 = 5 -2x = 5 + 3 -2x = 8 x = -8/2 x = -4 (but x < 0 condition is violated)
Since x cannot be negative in this case, there are no valid solutions for Case 4.
In summary, the valid solutions to the equation |1-2x| + |3x+2| + |x| = 5 are x = 1/2 and x = 2/3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili