
Sin (2 arccos ) 3÷5=срочно


Ответы на вопрос

Объяснение:
вот держи удачи в учебе пока!




To solve this expression, let's break it down step by step.
First, we need to find the value of arccos(3/5). The arccos function gives us the angle whose cosine is equal to the given value. In this case, arccos(3/5) means finding the angle whose cosine is 3/5.
We can use the Pythagorean identity to find the missing side of a right triangle. Since cosine is adjacent over hypotenuse, we can set the adjacent side as 3 and the hypotenuse as 5, and solve for the opposite side.
Using the Pythagorean theorem: (opposite)^2 + (adjacent)^2 = (hypotenuse)^2 (opposite)^2 + 3^2 = 5^2 (opposite)^2 + 9 = 25 (opposite)^2 = 16 opposite = 4
So, the opposite side is 4. Therefore, arccos(3/5) is equal to the angle whose opposite side is 4 and hypotenuse is 5.
Next, we need to find sin(2 * arccos(3/5)). Using the double-angle identity for sine, sin(2θ) = 2 * sin(θ) * cos(θ).
Since we know the value of arccos(3/5), we can find sin(arccos(3/5)) by using the Pythagorean identity: sin(arccos(θ)) = √(1 - θ^2).
sin(arccos(3/5)) = √(1 - (3/5)^2) = √(1 - 9/25) = √(25/25 - 9/25) = √(16/25) = 4/5
Now, we can calculate sin(2 * arccos(3/5)):
sin(2 * arccos(3/5)) = 2 * sin(arccos(3/5)) * cos(arccos(3/5)) = 2 * (4/5) * (3/5) = (8/5) * (3/5) = 24/25
Therefore, sin(2 * arccos(3/5)) is equal to 24/25.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili