
Sin (40°+x)sin(x-50°)=1


Ответы на вопрос

Решение приложено...




To solve the equation sin(40°+x)sin(x-50°) = 1, we can use trigonometric identities and algebraic manipulation. Here's how you can proceed:
Let's simplify the equation step by step:
Start by using the identity sin(A + B) = sin(A)cos(B) + cos(A)sin(B):
sin(40° + x)sin(x - 50°) = 1 (sin(40°)cos(x) + cos(40°)sin(x))(sin(x)cos(50°) - cos(x)sin(50°)) = 1 sin(40°)cos(x)sin(x)cos(50°) + cos(40°)sin(x)sin(x)cos(50°) - sin(40°)cos(x)cos(x)sin(50°) - cos(40°)sin(x)cos(x)sin(50°) = 1
Apply the double-angle identity sin(2θ) = 2sin(θ)cos(θ):
sin(40°)cos(x)sin(x)cos(50°) + cos(40°)sin(x)sin(x)cos(50°) - sin(40°)cos(x)cos(x)sin(50°) - cos(40°)sin(x)cos(x)sin(50°) = 1 2sin(40°)sin(x)cos(x)cos(50°) + 2cos(40°)sin(x)cos(x)sin(50°) - sin(40°)cos(x)cos(x)sin(50°) - cos(40°)sin(x)cos(x)sin(50°) = 1
Combine like terms:
(2sin(40°)cos(50°) - sin(40°)cos(x)cos(x) - cos(40°)sin(x)cos(x))sin(x) = 1
Simplify further:
sin(40°)cos(50°) - sin(40°)cos(x)cos(x) - cos(40°)sin(x)cos(x) = 1/sin(x)
We know that sin(x) cannot be zero, as division by zero is undefined in mathematics. So, we can multiply both sides of the equation by sin(x):
(sin(40°)cos(50°) - sin(40°)cos(x)cos(x) - cos(40°)sin(x)cos(x))sin(x) = (1/sin(x))sin(x) sin(40°)cos(50°)sin(x) - sin(40°)cos(x)cos(x)sin(x) - cos(40°)sin(x)cos(x)sin(x) = 1
Simplify further and combine like terms:
sin(40°)cos(50°)sin(x) - sin(40°)cos(x)cos^2(x) - cos(40°)sin^2(x)cos(x) = 1
Rearrange the terms and use the identity sin^2(x) = 1 - cos^2(x):
sin(40°)cos(50°)sin(x) - sin(40°)cos(x)(1 - sin^2(x)) - cos(40°)(1 - cos^2(x))cos(x) = 1 sin(40°)cos(50°)sin(x) - sin(40°)cos(x) + sin(40°)cos


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili