
2 sin^2 x - cos 2x = 1


Ответы на вопрос

2sin²x-cos²x+sin²x=1
3sin²x-(1-sin²)=1
3sin²x-1+sin²x=1
4sin²x=2
sin²x=1/2
(sinx-1/2)(sinx+1/2)=0
sinx=+-1/√2=+-√2/2
x=π/4+πk, k∈Z



To solve the equation 2sin^2(x) - cos(2x) = 1, we can simplify the equation and then apply trigonometric identities to solve for x.
Let's start by using the double-angle identity for cosine: cos(2x) = 2cos^2(x) - 1
Substituting this into the equation, we have: 2sin^2(x) - (2cos^2(x) - 1) = 1
Expanding and rearranging the terms, we get: 2sin^2(x) - 2cos^2(x) + 1 = 1
Now, let's use the Pythagorean identity for sin^2(x) and cos^2(x): sin^2(x) + cos^2(x) = 1
Rearranging this equation, we have: sin^2(x) = 1 - cos^2(x)
Substituting this into the previous equation, we get: 2(1 - cos^2(x)) - 2cos^2(x) + 1 = 1
Expanding and simplifying, we have: 2 - 2cos^2(x) - 2cos^2(x) + 1 = 1
Combining like terms, we get: -4cos^2(x) + 2 = 0
Dividing by -2, we have: 2cos^2(x) - 1 = 0
Adding 1 to both sides, we get: 2cos^2(x) = 1
Dividing by 2, we have: cos^2(x) = 1/2
Taking the square root of both sides, we have: cos(x) = ±√(1/2)
Now, let's find the values of x for which cos(x) = √(1/2) and cos(x) = -√(1/2).
For cos(x) = √(1/2): x = π/4 + 2πn or x = -π/4 + 2πn
For cos(x) = -√(1/2): x = 3π/4 + 2πn or x = -3π/4 + 2πn
where n is an integer.
Therefore, the solutions to the equation 2sin^2(x) - cos(2x) = 1 are: x = π/4 + 2πn, -π/4 + 2πn, 3π/4 + 2πn, -3π/4 + 2πn, where n is an integer.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili