
Log2(x-3)+log2(x+2)≤1


Ответы на вопрос

log(2)(x-3)(x+2)≤1
(x-3)(x+2)≤2
x²+2x-3x-6-2≤0
x²-x-8≤0
D=1+32=33
x1=(1-√33)/2 x2=(1+√33/2)
+ _ +
___________________________
(1-√33)/2 (1+√33)/2
x∈[(1-√33)/2 ;(1+√33)/2 ]



To solve the inequality , we can use logarithmic properties and algebraic techniques. Here's the step-by-step solution:
Step 1: Combine the logarithms using the logarithmic property . Apply this property to the given inequality: .
Step 2: Convert the inequality to exponential form. Rewrite the inequality using the definition of logarithms: is equivalent to . Apply this to our inequality: .
Step 3: Simplify the inequality: .
Step 4: Expand the right side of the inequality: .
Step 5: Move all terms to one side to obtain a quadratic inequality: .
Step 6: Factorize the quadratic: .
Step 7: Determine the sign of the quadratic expression for different intervals on the number line. We can do this by considering the signs of the factors and separately.
For : When , is negative. When , is positive.
For : When , is negative. When , is positive.
Step 8: Combine the signs:
- is negative for .
- is negative for .
From this analysis, we find the intervals where the inequality holds true:
Interval 1: Interval 2:
Step 9: Write the solution in interval notation:
Therefore, the solution to the inequality is .


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili