
X^2-10x+25/x^2-4x-12≥0


Ответы на вопрос






To solve the inequality:
We can start by finding the critical points and determining the sign of the expression in each interval.
First, let's factor the numerator and denominator:
The critical points occur when the numerator and denominator equal zero:
Numerator:
Denominator:
Now, we create a sign chart with these critical points:
Interval (-∞, -2): In this interval, we choose a value less than -2, let's say -3, and substitute it into the expression: The expression is positive in this interval.
Interval (-2, 5): In this interval, we choose a value between -2 and 5, let's say 0, and substitute it into the expression: The expression is negative in this interval.
Interval (5, 6): In this interval, we choose a value between 5 and 6, let's say 5.5, and substitute it into the expression: The expression is negative in this interval.
Interval (6, ∞): In this interval, we choose a value greater than 6, let's say 7, and substitute it into the expression: The expression is positive in this interval.
Now, we can determine the solution to the inequality based on the sign chart:
The solution is:
This means that the inequality is satisfied when x is less than or equal to -2, or when x is greater than 5 and less than or equal to 6, or when x is greater than or equal to 6.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili