Вопрос задан 05.09.2020 в 01:16. Предмет Математика. Спрашивает Егоров Максим.

В полдень от пристани отошел теплоход со скоростью 16км/ч. Через 3ч вслед ему отошел другой

теплоход и через 12/ч догнал первый. с какой скоростью двигался второй теплоход? с этим же вопросом попробуй составить задачу на встречное движение
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Statement:

В полдень от пристани отошел теплоход со скоростью 16 км/ч. Через 3 часа вслед за ним отошел другой теплоход и через 12 часов догнал первый. С какой скоростью двигался второй теплоход?

Solution:

To solve this problem, we can use the concept of relative speed. Let's assume the speed of the first ship is x km/h and the speed of the second ship is y km/h.

Given that the first ship traveled for 3 hours before the second ship started, we can calculate the distance traveled by the first ship as 3x km.

Now, let's consider the time it took for the second ship to catch up to the first ship. Since the second ship traveled for 12 hours, the distance traveled by the second ship is 12y km.

Since the second ship caught up to the first ship, the total distance traveled by both ships must be the same. Therefore, we can write the equation:

3x + 12y = 0 We also know that the speed of the first ship is 16 km/h. So we can write another equation:

x = 16 Now we can substitute the value of x in equation:

3(16) + 12y = 0

Simplifying the equation, we get:

48 + 12y = 0

Subtracting 48 from both sides, we get:

12y = -48

Dividing both sides by 12, we get:

y = -4

Therefore, the second ship was moving at a speed of -4 km/h.

Problem Statement (Meeting Point):

Now, let's try to create a problem involving two ships moving towards each other.

Two ships are initially 100 km apart. The first ship starts from point A and travels towards point B at a speed of 20 km/h. At the same time, the second ship starts from point B and travels towards point A at an unknown speed. After 2 hours, the two ships meet at a point between A and B.

What is the speed of the second ship?

Solution:

To solve this problem, we can again use the concept of relative speed. Let's assume the speed of the second ship is y km/h.

Given that the first ship traveled for 2 hours at a speed of 20 km/h, the distance traveled by the first ship is 2 * 20 = 40 km.

Since the two ships meet at a point between A and B, the total distance traveled by both ships must be equal to the initial distance between them, which is 100 km. Therefore, we can write the equation:

40 + 2y = 100

Subtracting 40 from both sides, we get:

2y = 60

Dividing both sides by 2, we get:

y = 30

Therefore, the second ship was moving at a speed of 30 km/h.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос