
Log2(x-2)+log2(x-3)=1 ОДЗ x-3>0,=> x>3 log_2((x-2)(x-3)) = 1 log_2(x^2-5x+6) =1 x^2-5x+6
=2 x^2-5x+4 = 0 D = 25-16 = 9 x = (5-3)/2 = 1 (не входит в ОДЗ) x = (5+3)/2 = 4 Ответ:4 почему одз только (х-3) ? и откуда взяли 5 и 6 распишие

Ответы на вопрос

Solving the Equation
To solve the equation log2(x-2) + log2(x-3) = 1, we can use the properties of logarithms.First, let's combine the logarithms using the property log(a) + log(b) = log(a * b). Applying this property to the equation, we get:
log2((x-2)(x-3)) = 1
Next, we can rewrite the equation in exponential form. The logarithmic equation log(base a)(b) = c is equivalent to a^c = b. Applying this to our equation, we have:
2^1 = (x-2)(x-3)
Simplifying further, we have:
2 = (x-2)(x-3)
Now, let's solve this quadratic equation.
Solving the Quadratic Equation
To solve the quadratic equation 2 = (x-2)(x-3), we can expand the equation and bring it to standard form.Expanding the equation, we get:
2 = x^2 - 5x + 6
Rearranging the terms, we have:
x^2 - 5x + 4 = 0
Now, we can factorize the quadratic equation:
x^2 - 4x - x + 4 = 0
x(x - 4) - 1(x - 4) = 0
(x - 1)(x - 4) = 0
From the factored form, we can see that the equation will be satisfied when either (x - 1) = 0 or (x - 4) = 0.
Solving for x, we have two possible solutions:
x - 1 = 0 => x = 1
x - 4 = 0 => x = 4
Domain of the Equation
Now let's discuss the domain of the equation. The domain refers to the set of values that x can take in order for the equation to be valid.In this case, we have the equation log2(x-2) + log2(x-3) = 1. For logarithmic functions, the argument (the value inside the logarithm) must be greater than zero. Therefore, we need to find the values of x that satisfy the condition x - 2 > 0 and x - 3 > 0.
Solving these inequalities, we get:
x - 2 > 0 => x > 2
x - 3 > 0 => x > 3
Combining the two inequalities, we find that x must be greater than 3.
Therefore, the domain of the equation is x > 3.
Summary
In summary, the equation log2(x-2) + log2(x-3) = 1 has two solutions: x = 1 and x = 4. However, the domain of the equation is x > 3. Therefore, the only solution that satisfies both the equation and the domain is x = 4.Please note that the values 5 and 6 were mentioned in the explanation as part of the expansion and factorization of the quadratic equation, but they are not directly related to the solution or the domain of the equation.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili