Вопрос задан 27.06.2020 в 08:37. Предмет Математика. Спрашивает Разумовский Влад.

В семье 5 детей. Найти вероятность того, что среди этих детей не более двух мальчиков. Вероятность

рождения мальчиков считать равной 0,51.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сатина Нургуль.
Событие А - не более 2-х мальчиков - является суммой событий:

А0 - ни одного мальчика
А1 - один
А2 - два.

Тогда А=А0+А1+А2, а так как эти события несовместны, то P(A)=P(A0)+P(A1)+P(A2). Найдём эти вероятности.

P(A0)=(1-p)⁵=q⁵=(1-0,51)⁵=(0,49)⁵, где p=0,51 - вероятность рождения мальчика, q - вероятность рождения девочки.
P(A1)=C(5,1)*p*q⁴=5*0,51*(1-0,51)⁴=2,55*(0,49)⁴, где C(n,k) - число сочетаний из n по k.
P(A2)=C(5,2)*p²*q³=10*(0,51)²*(0,49)³.

Тогда P(A)=(0,49)⁵+2,55*(0,49)⁴+10*(0,51)²*(0,49)³≈0,48. Ответ: ≈0,48.  
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос