
Вопрос задан 27.06.2020 в 08:37.
Предмет Математика.
Спрашивает Разумовский Влад.
В семье 5 детей. Найти вероятность того, что среди этих детей не более двух мальчиков. Вероятность
рождения мальчиков считать равной 0,51.

Ответы на вопрос

Отвечает Сатина Нургуль.
Событие А - не более 2-х мальчиков - является суммой событий:
А0 - ни одного мальчика
А1 - один
А2 - два.
Тогда А=А0+А1+А2, а так как эти события несовместны, то P(A)=P(A0)+P(A1)+P(A2). Найдём эти вероятности.
P(A0)=(1-p)⁵=q⁵=(1-0,51)⁵=(0,49)⁵, где p=0,51 - вероятность рождения мальчика, q - вероятность рождения девочки.
P(A1)=C(5,1)*p*q⁴=5*0,51*(1-0,51)⁴=2,55*(0,49)⁴, где C(n,k) - число сочетаний из n по k.
P(A2)=C(5,2)*p²*q³=10*(0,51)²*(0,49)³.
Тогда P(A)=(0,49)⁵+2,55*(0,49)⁴+10*(0,51)²*(0,49)³≈0,48. Ответ: ≈0,48.
А0 - ни одного мальчика
А1 - один
А2 - два.
Тогда А=А0+А1+А2, а так как эти события несовместны, то P(A)=P(A0)+P(A1)+P(A2). Найдём эти вероятности.
P(A0)=(1-p)⁵=q⁵=(1-0,51)⁵=(0,49)⁵, где p=0,51 - вероятность рождения мальчика, q - вероятность рождения девочки.
P(A1)=C(5,1)*p*q⁴=5*0,51*(1-0,51)⁴=2,55*(0,49)⁴, где C(n,k) - число сочетаний из n по k.
P(A2)=C(5,2)*p²*q³=10*(0,51)²*(0,49)³.
Тогда P(A)=(0,49)⁵+2,55*(0,49)⁴+10*(0,51)²*(0,49)³≈0,48. Ответ: ≈0,48.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili