Вопрос задан 20.06.2020 в 03:33. Предмет Математика. Спрашивает Залалдинова Динара.

В правильной треугольной пирамиде SABC с вершиной S, все ребра которой равны 2, точка М - середина

ребра АВ, точка О - центр основания пирамиды, точка F делит отрезок SO в отношении 3:1, считая от вершины пирамиды. Найдите угол между плоскостью MBF и плоскостью ABC.   Помогите решить пожалуйста! очень важно )) и если можно распишите поподрбнее! 
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крылов Антон.
Правильная треугольная пирамида - это тетраэдр.
AB = AC = BC = AS = BS = CS = 2
OF = 1/4*OS
Центр основания пирамиды О - это центр равностороннего тр-ка АВС.
CM - медиана, она же биссектриса и высота тр-ка АВС.
AM = AB/2 = 1, CM = √(AC^2 - AM^2) = √(2^2 - 1^2) = √(4 - 1) = √3
MO = 1/3*CM = √3/3; OA = OC = 2/3*CM = 2√3/3
OS = √(CS^2 - OC^2) = √(4 - 4*3/9) = √((36-12)/9) = √24/3 = 2√6/3
OF = 1/4*OS = 2√6/12 = √6/6
И наконец находим угол между плоскостью MBF = ABF и ABC.
tg(OMF) = OF/MO = (√6/6) / (√3/3) = √6/6 * 3/√3 = √6/(2√3) = √2/2
OMF = arctg (√2/2)



0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос