Вопрос задан 19.06.2020 в 23:34. Предмет Математика. Спрашивает Подолей Каріна.

Из точки к плоскости проведены две наклонные, длины проекций которых относятся как 1:2. Найдите

квадрат длины проекции меньшей наклонной, если длины наклонных равны 8 и 10
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Скрябина Юлия.
M\notin\alpha, MO\perp\alpha, A\in\alpha, B\in\alpha, AO:BO=1:2, MA=8, MB=10. \\ \\ \triangle MAO: \angle AOM=90^\circ, MA^2=AO^2+MO^2; \\ MO^2=MA^2-AO^2. \\ \\ \triangle MBO: \angle BOM=90^\circ, MB^2=BO^2+MO^2; \\ MO^2=MB^2-BO^2. \\ BO=2AO, \\ MO^2=MB^2-(2AO)^2. \\ \\ MA^2-AO^2=MB^2-(2AO)^2, \\ MA^2-AO^2=MB^2-4AO^2, \\ 3AO^2=MB^2-MA^2, \\ AO^2=\frac{1}{3}(MB^2-MA^2), \\ AO^2=\frac{1}{3}(10^2-8^2)=12.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос