
Вопрос задан 06.05.2020 в 05:58.
Предмет Математика.
Спрашивает Пономарева Ксюша.
На доске 4 на 4 расположены по клеткам доминошки


Ответы на вопрос

Отвечает Новиков Ваня.
Во-первых, заметим, что если какие-то 2 доминошки совпадают, то одну из них можно убрать так, чтобы условие выполнялось. Поэтому предположим, что они не совпадают. Кроме того, по условию, каждая из доминошек целикомнаходится на доске.
Предположим, что при удалении любой доминошки возникает хотя бы 1 непокрытая клетка. Тогда каждой из 13 доминошек можно поставить в соответствие клетку, которая оказывается непокрытой после удаления этой доминошки. Заметим, что 1 клетка не может соответствовать 2 доминошкам, иначе после удаления одной из доминошек она по-прежнему покрыта второй. Значит, не менее 13 клеток на доске покрыты ровно одной доминошкой.
Напишем на каждой клетке число, равное числу доминошек, которые эту клетку покрывают. Тогда у нас будет не менее 13 единиц. Сумма всех чисел равна 13*2=26, а это значит, что сумма чисел на оставшихся 3 клетках равна 26-13=13. Так как каждое число - целое, хотя бы одно из них не менее 5.
Если клетку покрывает хотя бы 5 доминошек, то хотя бы 2 из них совпадает, а это противоречит нашему предположению. Значит, предположение неверно, и одну доминошку можно удалить так, чтобы остальные 12 по-прежнему покрывали всю доску.
Предположим, что при удалении любой доминошки возникает хотя бы 1 непокрытая клетка. Тогда каждой из 13 доминошек можно поставить в соответствие клетку, которая оказывается непокрытой после удаления этой доминошки. Заметим, что 1 клетка не может соответствовать 2 доминошкам, иначе после удаления одной из доминошек она по-прежнему покрыта второй. Значит, не менее 13 клеток на доске покрыты ровно одной доминошкой.
Напишем на каждой клетке число, равное числу доминошек, которые эту клетку покрывают. Тогда у нас будет не менее 13 единиц. Сумма всех чисел равна 13*2=26, а это значит, что сумма чисел на оставшихся 3 клетках равна 26-13=13. Так как каждое число - целое, хотя бы одно из них не менее 5.
Если клетку покрывает хотя бы 5 доминошек, то хотя бы 2 из них совпадает, а это противоречит нашему предположению. Значит, предположение неверно, и одну доминошку можно удалить так, чтобы остальные 12 по-прежнему покрывали всю доску.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili