
Вопрос задан 21.01.2020 в 04:20.
Предмет Математика.
Спрашивает Костюкевич Кирилл.
Острые углы прямоугольного треугольника равны 50 и 40(градусов). Найдите угол между высотой и
медианой, проведенным из вершины прямого угла.


Ответы на вопрос

Отвечает Шевкунов Артём.
Чертеж и расчет в приложении.
Находим угол между медианой AM и высотой AD
Смотрим на треугольник ADC - прямоугольный - т.к. AD - высота.
Сумма углов любого треугольника = 180 градусов.
∠CAD = 180 - 90 - 50 = 40 град.
Проводим высоту MN. Треугольник ABM - равнобедренный, т.к. BM=CM и AN=NB
∠BAM = ∠ABM = 40
И окончательно
∠DAM =∠BAC - ∠BAM - ∠CAD = 90-40-40 = 10 град - ОТВЕТ
Находим угол между медианой AM и высотой AD
Смотрим на треугольник ADC - прямоугольный - т.к. AD - высота.
Сумма углов любого треугольника = 180 градусов.
∠CAD = 180 - 90 - 50 = 40 град.
Проводим высоту MN. Треугольник ABM - равнобедренный, т.к. BM=CM и AN=NB
∠BAM = ∠ABM = 40
И окончательно
∠DAM =∠BAC - ∠BAM - ∠CAD = 90-40-40 = 10 град - ОТВЕТ


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili